A Performance Tuning Methodology: From the System
Down to the Hardware — Diving Deeper

Jackson Marusarz
Intel Corporation
ATPESC 2014

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved. Optimization
Notice CI

*Other brands and names are the property of their respective owners.

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Optimization: A Top-down Approach

H/W tuning: OS tuning:
BIOS (TB, HT) gage Sfi_Te
" wap file
Z'emor’l'(l o RAM Disk
) _etwor / Power settings
§ Disk I/O Network protocols

. I

" Better application design:
Parallelization

Fast algorithms / data bases
Programming language and RT libs

adx3 wa1sAs ‘SO =
(D

Performance libraries 8
Driver tuning
Tuning for Microarchitecture: n
- Compiler settings/Vectorization é
Processor |La . & ' Memory/Cache usage %
CPU pitfalls S

Ei@ Software & Services Group, Developer Products Division

i ion. i . Optimization
Software Copyright © 2014, Intel Corporation. All rights reserved Ng‘tjce m
Products *Other brands and names are the property of their respective owners. R

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Performance Tuning — Diving Deeper :
Perform System and Algorithm tuning first

(#) Elapsed Time: 26.530s

CPU Time: 262345
Instructions Retired: 121,888,182,832
CPI Rate: 0434
CPU Frequency Ratio: 1000 = .
Paused Time: 0 General Exploration Ho
Overhead Time: 0 - - - - . -
vermead fime : @ Analysis Target Analysis Co g Jottom-up | |+ Caller/Callee wn Tree| | B Tasks and Frames | | B8 Graphics
Spin Time: 0s
@® Top Hotspots (@) Elapsed Time: 15.041s
This section lists the most active functions in your application. Optimizing these hotspot functions typically results in improving CPU Time: 58860
Function CPU Time Instructions Retired: 270,374,405,561
Atom::calc_force 17.014s CPIRate: 0.499
stdz:vector<double, std::allocator<double> >::operator|] 4758 CPU Frequency Ratio: 1,000
round 3612 Paused Time: 0s
round 06053 Overhesd Time: 0s
_printf_fp 00815 e
Spin Time: 1.795s
() CPU Usage Histogram @ Top Hotspots

This histogram represents a breakdown of the Elapsed Time. It visuslizes what percentage of the wall time the specific number

R e 2t g ot oy P e g, This section lists the maost active functions in your application. Optimizing these hotspot functions typically results in improving overall application performance.

355 " ¥ Function CPU Time

285 n gl Atomicalc_forceSompSparallel_for@116 34.814s
o !
E s g roun 155
£ g d 5715
= g
T s S std:vector< double, std:allocator<doubles > operater(] 54225
= T __kmp_wait_yield_4 27665
2

I e __kmp_compare_and_stare32 22425

7 3 3 1 5
o Over
0 .
Simultaneously Utilized Logical CPUs ® CPU Usage Histogram

This histogram represents a breakdown of the Elapsed Time, It visualizes what percentage of the wall time the specific number of CPUs were running simultaneously, CPU Usage may be
higher than the thread concurrency if a thread is executing code on a CPU while it is logically waiting.
155 T

125

Elapsed Time

[
Simultaneously Utilized Logical CPUs

This presentation uses screenshots from Intel® VTune™ Amplifier XE
The concepts are widely applicable

Software & Services Group, Developer Products Division

Software

Products

Copyright © 2014, Intel Corporation. All rights reserved. Optimization

*Other brands and names are the property of their respective owners.

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Algorithm Tuning :inl:er

A Few Words

e There is no one-size fits all solution to algorithm tuning

« Algorithm changes are often incorporated into the fixes
for common issues

e Some considerations:
— Parallelizable and scalable over fastest serial implementations
— Compute a little more to save memory and communication
— Data locality -> vectorization

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved. Optimization
Notice £

*Other brands and names are the property of their respective owners.

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Compiler Performance Considerations

Feature Flag

Optimization levels -00, 01, 02,03
Vectorization -xHost, -xavx, etc...
Multi-file inter-procedural optimization -ipo

Profile guided optimization (multi-step -prof-gen

build) -prof-use

Optimize for speed across the entire -fast

program catc oy e
**warning: -fast def'n changes over time

Automatic parallelization -parallel

* Compilers can provide considerable performance gains when used intelligently
« Consider compiling hot libraries and routines with more optimizations

» Always check documentation for accuracy effects

e This could be a day-long talk on its own

This is from the Intel compiler reference, but others are similar _J

Software & Services Group, Developer Products Division

i ion. i . Optimization
Software Copyright © 2014, Intel Corporation. All rights reserved Ng‘tjce m
Products *Other brands and names are the property of their respective owners. e

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

MPI Tuning :

* Find the MPI/OpenMP sweet spot
* Determine how much memory do your ranks/threads share
 Communication and synchronization overhead

B Intel® Trace Analyzer = &=

TR File Options Project Windows Help

Summary: vijacobic.single.stf

Total time: 0.056 sec. Resources: 4 processes, 1 node. ReSOU rce usage

Ratio

Is your o _ _ -
his section represents a ratio of all MPI calls to the rest of your code in the application. IS yo u r

application S
SV «°«s 0 K5 opplication
bound? CPU-bound?
: Top MPI functions

This section lists the most active MPI functions from all MPI calls in the application.

P _attrectuce NN 000459 sec (458 %)

i isend [0.00298 sec (291 %)
weL_irecy [0.00294 sec (2.87 %)
Largest MPI
cliges wp_waica1l - 0.00176 sec (1.72%)
consumers wpl_Finaiize [£.000929 sec (0.906 %)

Where to start with analysis

For deep analysis of the MPI-bound application click "Continue >" To optimize node-level performance use the Intel® VTune™ Amplifier XE and
to open the tracefile View and leverage the Intel® Trace Analyzer - algorithmic level tuning with hotspots and threading efficiency analysis
functionality: - microarchitecture level tuning with general exploration and bandwidth analysis

- Performance Assistant - to identify possible performance problems
- Imbalance Diagram - for detailed imbalance overview
- Tagging/Filtering - for thorough customizable analysis

For more information about how to configure analysis for MPI applications,
see Intel® VTune™ Amplifier XE documentation:

Analyzing MP1 applications with Intel® VTune™ Amplifier XE

Show Summary Page when opening 2 tracefile

Intel® Trace Analyzer and Collector: traceanalyzer-colle

Ei@ Software & Services Group, Developer Products Division

Software Copyright © 2014, Intel Corporation. All rights reserved. Optimizton
Products *Other brands and names are the property of their respective owners. =

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/
http://intel.ly/traceanalyzer-collector

Common Scaling Barriers (intel

 Static Thread Scheduling
e Load Imbalance
» Lock Contention

(=) Thread Concurrency Histogram
This histogram represents a breakdown of the Elapsed Time. It visualizes the percentage of the wall time the specific number of threads were running
simultaneously. Threads are considered running if they are either actually running on a CPU or are in the runnable state in the OS scheduler.
Essentially, Thread Concurrency is a measurement of the number of threads that were not waiting. Thread Concurrency may be higher than CPU usage

if threads are in the runnable state and not consuming CPU time.

4.55

Average

Target Concurrency

Elapsed Time

3.65
2.7s
1.85
0.9s
- i

You paid for the nodes, so use them! J

10 11 12+

=]
w

5II"|"|LI|tEmEUUS|‘_||' Running Threads

Software & Services Group, Developer Products Division

Software
Products

Copyright © 2014, Intel Corporation. All rights reserved. Optlmlzatlon

*Other brands and names are the property of their respective owners.

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Static Thread Scheduling

« Statically determining thread counts does not scale
* Core counts are trending higher
* Designs must consider future hardware
« Commonly found in legacy applications

NUM_THREADS = 4;
pthread t threads[NUM_THREADS];
int rc;
long t;
int chunk = limit/NUM_THREADS;
for(t=0;t<NUM_THREADS ; t++){
range *r = new range();
r->begin = t*chunk;
r->end = t*chunk+chunk-1;
rc = pthread _create(&threads[t], NULL, FindPrimes, (void *)r);

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved. Optimization
Notice L=

*Other brands and names are the property of their respective owners.

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Static Thread Scheduling

« Statically determining thread counts does not scale
* Core counts are trending higher
* Designs must consider future hardware
« Commonly found in legacy applications

NUM_THREADS = 4;

for(t=0;t<NUM_THREADS; t++){

rc = pthread _create(&threads[t], NULL, FindPrimes, (void *)r);

[in/teb Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved. Optimization
i lIl P

Software
Products *Other brands and names are the property of their respective owners.

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Static Thread Scheduling

« Statically determining thread counts does not scale
* Core counts are trending higher
* Designs must consider future hardware
« Commonly found in legacy applications

Create Threads Dynamically - NUM_THREADS = get num_procs();

for(t=0;t<NUM_THREADS; t++){

rc = pthread _create(&threads[t], NULL, FindPrimes, (void *)r);

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved. Optimization
*Other brands and names are the property of their respective owners. M

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Load Imbalance ->

@'!t’el

* Dynamically determining thread count helps... but isn't a silver bullet
« Workload distribution must be intelligent
* Threads should be kept busy
* Maximize hardware utilization

A
SRk 0% E | T |7 Thread
I 1

FindPrimes (0 - &8 Running

FindPrimes (0 duk CPU Time

i:ﬁ::m:: :g e — CPU Usage

y

FindPrimes (0 ik CPU Time
o [FindPrimes (0
& |FindPrimes (0
£ [FindPrimes (0

start (0x534

CPU Usage
4 P

Ei@ Software & Services Group, Developer Products Division

Software Copyright © 2014, Intel Corporation. All rights reserved. Optimizton
Products *Other brands and names are the property of their respective owners. e

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Load Imbalance - *
(inte
* Dynamically determining thread count helps... but isn't a silver bullet
« Workload distribution must be intelligent

* Threads should be kept busy
* Maximize hardware utilization

The key to balancing loads is to use a threading model that supports tasking
and work stealing

Some examples:
* OpenMP* dynamic scheduling
* Intel Threading® Building Blocks

* Intel® Cilk™ Plus

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved. Optimization
i lIl P

*Other brands and names are the property of their respective owners.

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Lock Contention tel

* A well balanced application can still suffer from shared-resource competition
* Synchronization is a necessary component
* Excessive overhead can destroy performance gains
* Numerous choices for where and how to synchronize

(= Elapsed Time: 17.943s

_ ald Lount: .
Wait Time: 103.741s

Wait Count: 251,343

CPU Time: 27.120s
Paused Time: 0s

(» Top Waiting Objects
This section lists the objects that spent the most time waiting in your application. Objects can wait on specific calls, such as sleep() or /O, or on
contended synchronizations. A significant amount of Wait time associated with a synchronization object reflects high contention for that object and,

thus, red

Wait Time Wait CoU
103.639s

TBB Scheduler 0.002s 22

Stream /proc/meminfo Oxecfb3332 0.000s 1
Stream /proc/self/maps 0x898a1749 0.000s 1 N

@ Thread Concurrency Histogram
This histogram represents a breakdown of the Elapsed Time. It visualizes the percentage of the wall time the specific number of threads were running
simultaneously. Threads are considered running if they are either actually running on a CPU or are in the runnable state in the 05 scheduler.
Essentially, Thread Concurrency is a measurement of the number of threads that were not waiting. Thread Concurrency may be higher than CPU usage

if threads are in the runnable state and not consuming CPU time.

10s '
;
E Bs 3:
E g
E 4s UE
- g
o 25 E:

0s 5 6 7 8 9 10 ¥ 12+

[ok] Ideal over

W 0
Simultaneously Running Threads

Software & Services Group, Developer Products Division

Software Copyright © 2014, Intel Corporation. All rights reserved.
Products *Other brands and names are the property of their respective owners.

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Lock Contention (intel

* A well balanced application can still suffer from shared-resource competition
* Synchronization is a necessary component
* Excessive overhead can destroy performance gains
* Numerous choices for where and how to synchronize

™ Concurrency Locks and Waits viewpoint (change) @

@ Analysis Target Analysis Type |B Collection Log| | M Summary | |+% Bottom-up| % Caller/callee |+% Top-down Tree| | B Tasks and Fra
Source Assembly | HE 991
sou.. Wait Time by Utilization B wait | spin
Line = lins Count | Time
Dlidle @ Poor [JOk [Ideal [Over

34

36 % pthread mutex lock(&lock); 103.639 ([N 251294 0.180s

37 primes++;

'38 all primes.push back(i);

139 pthread mutex unlock(&lock);
a0}

|41

|42 bool IsPrime(int p) {

|43 for (int i = 2; i*i <= p; i++) {
| 44 if (p/i*1 == p) return false;
45 }

'46 return true;

47}

Software & Services Group, Developer Products Division

i ion. All ri : 0
§0,1:tware Copyright © 2014, Intel Corporation. All rights reserved .
roducts N

*Other brands and names are the property of their respective owners.

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Lock Contention

* A well balanced application can still suffer from shared-resource competition
* Synchronization is a necessary component
» Excessive overhead can destroy performance gains
* Numerous choices for where and how to synchronize

Some solutions to consider:
* Lock granularity

 Access overhead vs. wait time

» Using lock free or thread safe data structures

tbb::atomic<int> primes;
tbb: :concurrent vector<int> all primes;

* Local storage and reductions

[in/teb Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved. Optimization

Software
Products NOT

*Other brands and names are the property of their respective owners.

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Microarchitectural Tuning (inl:er

e Intel uArch specific tuning

 After high-level changes look at PMUs for more tuning

— Find tuning guide for your hardware at www.intel.com/vtune-
tuning-guides

e Every architecture has different events and metrics
« We try to keep things as consistent as possible

- Start with the Top-Down Methodology
— Integrated with the tuning guides

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved. Optimizl‘_aijlon
*Other brands and names are the property of their respective owners. Motice ===

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/
http://www.intel.com/vtune-tuning-guides

Introduction to Performance Monitoring Unit : *
intel
(PMU) L/

e Registers on Intel CPUs to count architectural events
— E.g. Instructions, Cache Misses, Branch Mispredict

« Events can be counted or sampled
— Sampled events include Instruction Pointer

« Raw event counts are difficult to interpret
— Use a tool like VTune or Perf with predefined metrics

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved. Optimization
ors. Notice LI

*Other brands and names are the property of their respective own

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Background :i@

Hardware Definitions Front-End
. Front—end: | 32K L1 Instruction Cache p»|Pre-decode ps=|Instr Queueb@
B h Predict
— Fetches the program code | e — | T5K 0P Cache |]
. 0 Load [| store [] Reorder — ——
— Decodes them into low-level hardware operations - sutors || outts || cutons W | Allocatd/HenameRetir
micro-ops(uops) |- s m s e e e e — —— = = oibarers
. [Scheduler
— uops are fed to the Back-end in a process called [Port0 | |p<;m | |Po‘rts [[Portz | [Port3 | [Port4
allocation AW | AU | AU Load |[Load | STD
V-Mul V-Add | []JMP StAddr_|| StAddr |
— Can allocate 4 uops per cycle VShuffid | V-Shuffie | 256-FP Shuf * *
Fdiv 256- FP Add 256- FP Bool
« Back-end: 256- FP MJL‘—I—‘ 256- FP Blend
256- FP Blend l | Memory Control |
— Monitors when a uop’s data operands are available ‘ 48 bytestcyce
— Executes the uop in an available execution unit | 256K L2 Cache (Unified) Butters
32K L1 Data Cache

— The completion of a uop’s execution is called
retirement, and is where results of the uop are
committed to the architectural state

— Canretire 4 uops per cycle
« Pipeline Slot:

Back-End

— Represents the hardware resources needed to
process one uop

[in/teb Software & Services Group, Developer Products Division

Software Copyright © 2014, Intel Corporation. All rights reserved.

Products

*Other brands and names are the property of their respective owners.

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Background :i@

Hardware Definitions Front-End
. Front—end: | 32K L1 Instruction Cache p»|Pre-decode ps=|Instr Queueb@
B h Predict
— Fetches the program code | e — | T5K 0P Cache |]
. 0 Load [| store [] Reorder — ——
— Decodes them into low-level hardware operations - sutors || outts || cutons W | Allocatd/HenameRetir
micro-ops(uops) |- s m s e e e e — —— = = oibarers
. [Scheduler
— uops are fed to the Back-end in a process called [Port0 | |p<;m | |Po‘rts [[Portz | [Port3 | [Port4
allocation ALU | ALU | AU Load |[Load | STD
V-Mul V-Add | []JMP StAddr_|| StAddr |
— Can allocate 4 uops per cycle VShuffid | V-Shuffie | 256-FP Shuf * *
Fdiv 256- FP Add 256- FP Bool
« Back-end: 256- FP MJL‘—I—‘ 256- FP Blend
256- FP Blend l | Memory Control |
— Monitors when a uop’s data operands are available ‘ 48 bytestcyce
— Executes the uop in an available execution unit | 256K L2 Cache (Unified) Butters
32K L1 Data Cache

— The completion of a uop’s execution is called
retirement, and is where results of the uop are
committed to the architectural state

— Canretire 4 uops per cycle
« Pipeline Slot:

Back-End

— Represents the hardware resources needed to
process one uop

Therefore, modern “Big Core” CPUs have 4 "Pipeline Slots” per cycle

[in/teb Software & Services Group, Developer Products Division

Software Copyright © 2014, Intel Corporation. All rights reserved.

Products

*Other brands and names are the property of their respective owners.

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

The Top-Down Characterization (inter

e Each pipeline slot on each cycle is classified into 1 of 4
categories.

« For each slot on each cycle:

Top Level breakdown

BackEnd
stall?

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved. 0ptimizaton
*Other brands and names are the property of their respective owners. SONCE

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

The Top-Down Characterization

* Determines the hardware bottleneck in an application
« Sumto 1.0

« Unitis “Percentage of total Pipeline Slots”

* This is the core of the new Top-Down characterization

« Each category is further broken down depending on available
events

* Top-Down Characterization White Paper

http://software.intel.com/en-us/articles/how-to-tune-applications-using-a-top-down-characterization-of-
microarchitectural-issues

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved. Optimization

*Other brands and names are the property of their respective owners.

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/how-to-tune-applications-using-a-top-down-characterization-of-microarchitectural-issues

Tuning Guide Recommendations (intel’

Expected Range of Pipeline Slots in this Category, for a
Hotspot in a Well-tuned:
Client/ Server/ Database/ High Performance
Category Desktop Distributed Computing (HPC)
application application application
Retiring 20-50% 10-30% 30-70%
gl 20-40% 20-60% 20-40%
Bound
Front-End 1 5405 10-25% 5-10%
Bound
Sl 5-10% 5-10% 1-5%
Speculation

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved. Optimization
*Other brands and names are the property of their respective owners. SONCE =

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Efficiency Method: % Retiring Pipeline Slots intel)

« Why: Helps you understand how efficiently your app is using
the processors

| . =
| General Exploration - General Ex

& Analysis Target ' Analysis Type | | B Collection Log Cﬁ Bottom-up

Grouping: IFuru:I:in:un I Call Stack,
Hardware Ev ... | Hardware Ev ... | Filled Pipeline Sloks
Tr Bad Speculation
Function f Call Stack CPU_CL... INST_RETIRED.
THREAD: AN Branch | o
n:|r|n:||r|h-r'E|f) A e
[+ sphere_inkersect 7,676,000,000 10,258,000,000 0,
[+ grid_bounds_intersect 1,192,000,000 826,000,000
[Gdipcreatesalidril 02,000,000 548,000,000
[#I[TEB Scheduler Inkternals) 250,000,000 72,000,000
[+ pos2grid 235,000,000 224,000,000 1.
#[rdpdd.dl] 236,000,000 514,000,000 0.4
[tri_jnkersect 195,000,000 234,000,000
[#shader 176,000,000 142,000,000 (]
[+ Ravpnk 136, 000, 000 270,000,000
[#intersect_objects g6, 000,000 5,000,000
[#%Morm &0,000,000 &4,000,000
[+1KeSwnrhronizeF werntinn 74 000,000 1r.nnn.nnn
Salartad 1 rruaf e T aOL? nnn o 10 40 nrm nnn

(i/nteD“ Software & Services Group, Developer Products Division

i ion. i . Optimization
Software Copyright © 2014, Intel Corporation. All rights reserved Ng‘tjce m
Products *Other brands and names are the property of their respective owners. B

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Efficiency Method: Changes in Cycles per :
Instruction (CPI)

« Why: Another measure of efficiency that can be useful
when comparing 2 sets of data
— Shows average time it takes one of your workload'’s instructions to

execute

™ General Exploration - General Exploration /4 @

€ analysis Target i Analysis Type

B8 collection Log C% Bottom-up

[+ posZgrid
[#[rdpdd.dl]
[Ftri_inkersect
[# shader
FRaypnt

[FYMarmm

Software

Products

GErouping: IFunctiDn [Call Skack.

Hardware Ev ... | Hardware Ev ... |

Filled Pipeling Slots

Function j Call Stack.

7,676,000,000 10,258,000,00

[+ grid_bounds_intersect
[+ GdipCreatesolidFil
[#[TBE scheduler Internals]

[#Hintersect_objects

[FEeswnrhronizeF xaritinn
Salarkad 1 rraul et

o
CPU_CL...
THREAD

IM3T_RETIRED.
AMY

1,192,000,000
£92,000,000
280,000,000
235,000,000 224,000,00
236,000,000
193,000,000
176,000,000
138,000,000
56,000,000
50,000,000 §4,000,000

g26,000,00

53,000,000 1.483

F4. 000,000 10000, 000
F Qe Ann ann A0 edn nnn nnn

Copyright © 2014, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

0.176
0,307
0,265
0.221
0,456
0,341
0,227
0.543
0116
0.250

Software & Services Group, Developer Products Division

Bad Speculation

Branch
Mispredict

Machir

Optimization
Notice £

ntel.

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Microarchitectural Tuning - Top-Down :

ral Exploration viewpoint (change) @

& Analysis Target i Analysis Type | | 3 Collection Log | | B Summary *% Top-down Tree| | B Tasks and Frames

Grouping: [Funcﬁnn [Call 5tack

Hardware Event Count by Har... Hardware Ev... Filled Pipeline Slots Unfilled Pipeline Slots (Stalls)
@
. CPI
Function / Call Stack CPU_CLK_UNHALTED. INST_RETIRED. Rate .. Bad Back-end Front-end
THREAD v ANY nng Speculati... Bound Bound

B Atom::calc_forceSompSparallel_for@116 79,976,119,964 [196,686,295,0 ...| 0.407 0632 0.000 [N 0.355 0.024

round 13,082,019.623 12624018936 1.036 0.344 0188 0.463 0.006
stdivector< double, std:allocator< double> = ioperator] 12338018 507 33.740,050,610 0.366 0.689 0.026 0.251 0034
F__kmp_wait_yield_4 6,448009672 3546005319 1518 0.289 0.003 0.694 0.014
F_kmp_compare_and_store32 5,058,007 587 5440008160 0930 0.298 0.008 0.670 0.024
Hfloor 4,398 006,597 5096,007644 0.863 0.425 0211 0.357 0.008
*_kmp_compare_and_storebd 2,048,003,072 758,001,137 2702 0110 0.018 0.807 0.066

e This code is actually pretty good. High retiring percent.
 Let's investigate Back-End bound

Software & Services Group, Developer Products Division

Software Copyright © 2014, Intel Corporation. All rights reserved. Optimization
Products *Other brands and names are the property of their respective owners. otk Ll

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Microarchitectural Tuning - Top-Down intel.

FIIED FIPENNE 310TS UNTINED FIPEINE 3105 |3Tals)
Back-end Bound
Function / Call Stack . Bad Core Bound
Retiring . M. I
Speculati... Bo Port Utilization

Cycles of 0 ... Cycl... Cycl... Cycles of 3+ Ports Ut...

B Atomi:calc_forcelompiparallel_for@l16 0.632 0.000(0,062 0,082 0000 0.000 0411 |
round 0.344 0188 0249 0175 0,000 0000 0.565
[stduvector< double, std:allocator< doubles> > operator(] 0,689 0026 0,049 0,092 0,000 0,000 0.372
[__kmp_wait_yield_4 0.289 0003 0451 0536 0000 0000 0.852
[__kmp_compare_and_store32 0,298 0008 0415 0,527 0.000 0,000 0,738
[floor 0.425 0211 0152 0126 0000 0000 0.464

Core Bound
This metric shows how core non-memory issues imit the performance when you run out of 00O resources or are saturating certain execution units (for example, using FP-chained long-atency arithmetic operations).

Port Utikzation

This metric represents a fraction of cydes during which an application was stalled due to Core non-divider selated issues. For example, heavy data-dependency between nearby instructions, or a sequence of instructions that overloads spedfic
ports.

The number of cydes during which 3 ar mare ports were utilized.

Threshold: { ({ {UOPS_EXECUTED.CYCLES_GE_3 UOPS_EXEC) / CPU_CLK_UNHALTED. THREAD J = 0.2) * { CPU_CLK_UMNHALTED.THREAD / = 0.05))

We're basically hammering the compute hardware. Are we vectorizing?

Software & Services Group, Developer Products Division

Softuare Copyright © 2014, Intel Corporation. All rights reserved.
Products *Other brands and names are the property of their respective owners. S

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Microarchitectural Tuning - Top-Down :

113 ouble Zr natoms] ; 0xd057c5 126 movsxd fecx, %rcx

114 ouble RijsQ[] [matoms] 0057 cB 126 imul %rdx, %rcx

11 omp_set_num_threads(4); 04057 cc 126 addg (%rax), %Ircx

116 #pragma omp parallel for sch 0xd057 cf 126 movl -0x3cO(%rbp), %eax

117 for(int i=0; i<(natoms-1) 0 04057 d5 126 movaxd feax, irax

118 double r2i, r&i; 0057 d8 126 imual $0x8, %rax, %rax

119 double Fij, Fxij, Fvij, 0xd057dc 126 add %rax, %rcx

120 = 04057 df 126 movsdg (ircx), Txmm0

121 for{int j=i+l; j<natoms; 924,001,386. 924, [|Z| | 0573 126 movg -0x398 ((rbp), %rax

122 =l 0:4057ea 126 movg (%rax), %rax

173 Xr[il[3] = rx[i] - 2z 8944013416 8,94 w057 ed 126 movsdg 0x148 (3rax), Sxmml

124 ¥r(i][3] = ry[i] - 1 5952,008,92¢ (N 595 g | 0x4057f5 126 , Xm0

125 Zr[i][3] = zz[i] - ¥ 6,858,010,257 (NN 635 m 0x4057f9 126 CEITG 0x403c50 <rounds
Xr[i] [§]1 = Xr[i][j] | 19,796,029,694 19,7 B 0057 fe Block 14:

127 Yr[i][i] = ¥r[il[3] | 6,828,010,242 (N 6,82 m | 0d057fe 126 movsdg $xmm0, -0x153 [(:rbp)

128 Zr[i][i] = Zr[i][3] | 7.950,011,925 (NG 795 m 0x405806 126 movg -0x390(%rbp), trax

129 Oxd40580d 126 movg -0x338(%irbp), %rdx

130 f/Calculate distance Ox405814 126 imal $0x8, %rdx, %rdx

131 F*Kr = rx[i] - rx[]] 05818 126 movl -0x3ec(®rbp), %ecx

132 Yr = ry[i] - rv[il: Oxd0581e 126 movsxd fecx, %rcx

133 Zr = rz[i] - rz[j]: Oxd05821 126 imul %rdx, %rcx

134 ¥r = Er - box_x*roun (xd05825 126 addg (%rax), %rcx

SSE Instructions! Optimize with the compiler e.g. -xhost

[in/teb Software & Services Group, Developer Products Division

Software Copyright © 2014, Intel Corporation. All rights reserved.

Products

*Other brands and names are the property of their respective owners.

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Microarchitectural Tuning - Top-Down

double r2i, réi;

double Fij, Fxij, Fyii,

for(int j=i+l; j<natoms; 1,368,002,052 1,36
Kr[i][j] = rx[i] - z| 2,056,003,084 2,05
Yrii][i] = ry(i] - ¥ 702,001,053 [702, |=
Zr[il[j] = rz[i] - 7 1,502,002,253 [1,50
Xr[i] [§] = Xr[i][3] | 4,062,006,003 NN 4,06/
Yr[i] [§] = ¥r[i][3] | 3,022,004,533 3,02
Zr[i][] = Zr[i][3] | 12,148,018,222 (NN 12,1

AV X2 on Haswell

M General Exploration General Exploration viewpoint (change) @

& Analysis Target

.iu.nalj,.-‘:iz T'_',"FlE] l::|:|||r':|:ti|:|r'||_|:|g o E:I:Ittl:ll'l'l-lJFl

0x030ch
0030 ch
0x030d0
0xd030d4
0xd030d2
0xd030dd
0xd030e3
0wd030e8
04030 ee
0x030F3

0x0308

0wd030fc

intel.

127 i $xmmld, $xmmls, Sxmmll 58,000,087)

126 vaived $Pme, sxrm9, Txmms 1,324,001,936 (NN
128 ~0x28 ($rbp), %rcx 548,000,972 (1

127 vaddsd %xmmll, %xmml, %xmmlz 98,000,147 [

126 vaddsd $xmm5, $xmml, $xmméE 42,000,063 |

127 vroundsd $0x1, $xmml2, %xoml2, %xomls 738,001,107 (DD

127 vmulad $xmmld, %xrml3, %xmmll 235,000,354 [

126 vroundsd £0xl, 3xmmé, SxmmE, SxmmT 874,001,311 (N
127 voubad $xmmll, %xrml5, %xmmd 624,000,936 (1

126 vmulad $xmm8, $xmm7, Exmml 650,000,975 [

143 vmulad $xmmd, $xmmd, 3xTmE 2,048,003,072 (NN
126 voubad $xmml0, %xmmd, $xoms3 1,022,001,533 (N

M| General Exploration General Exploration vie

& Analysis Target| | * Analysis Type| | B Collection Log

wpoint

(#) Elapsed Time: 15.041s
CPI Rate: 0.499
Clockticks: 135,034,202,551

Instructions Retired: 270,374,405,561

Before

Software Copyright © 2014, Intel Corporation. All rights reserved.

Products

*Other brands and names are the property of their respective owners.

(#) Elapsed Time: 10.670s
CPIRate: 1.051
Clockticks: 95,772,143,658

91,110,136,665

After

Instructions Retired:

Software & Services Group, Developer Products Division

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Top-Down with a Memory Bound issue tal

™ General Exploration General Exploration viewpoint (ch

& Analysis Target| | * Analysis Type | | B Collection Log| | K Summary s Top-down Tree| | BB Tasks and Frames | | B

Grouping: lFunctinn J Call Stack

Hardware Event C... Hardware Event... Filled Fipeline Slots Urfilled Pipeline Slats (Stalls)
%
Function / Call Stack CPUCLKU... _ INST RETIRED., CPIRate i Bad Back-end Front-end
THREAD ANY FINNS gpeculation Bound Bound

43,100,064,650 [RERIERL]

X rrultiplyl L
HKewaitForkdultipleObjects 86,000,129 14,000,021 6.143 0.081 0,244 0.430 0.244
F KeSetTimer 86,000,129 6,000,009 14,333 0.000 0.000 0,913 0.081

M General Exploration General Exploration viewpoint (ch

@ Analysis Target| | * Analysis Type| | B8 Collection Log| | Kl Summary + Top-down Tree| | B Tasks and Frames

Grouping: [Functinn I Zall Skack,
Filled Pipeline 5lots Unfilled Pipeline Slots (Stalls)
Back-end Bound
Function / Call Stack Retiing Bad Mermory Bound core Front-end
Speculation L1 L2 L3 DRAM Bound Store o] Bound
Bound Bound Bound Bound

0.064

E rrultiphyl
[KewfatFortultipleObjects 0.0l 0.244 0.000 0.326 0.000 0,000 0.000 0000 -~

DRAM Bound Function

[in/teb Software & Services Group, Developer Products Division

Optimization

Copyright © 2014, Intel Corporation. All rights reserved.
Products *Other brands and names are the property of their respective owners.

Software

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Top-Down with a Memory Bound issue -

® General Exploration Har e Event Coun t (change) @ Intel VTune Amplifier XE 2013
@ 2 Target Analysis Type | |28 Collection Log| | B Surnmary| | #% PMU Events| | B8 Uncore Bvents | | #% Caller/callee | | %% Top-down Tree | | B Tasks and Frames I’
[Source][Assembly]| | LT @l B
Sour. i
Line Source
MEM_LOAD_UOPS RETIRED.LLC_MISS PSS IDOWM
14 }
15 1
£l }
EN
38 vold multiplyl(int wmsize, int tid<, int numt, TYPE a[J[NUM], TYPE b[][WNUM], TYPE c[][NUIM])
El i
40 int i,3,k: =
41 |
42 /¢ Waive implementation M
43 for{i=tidd; i<msize; i=itnumt) §
44 for(i=0; j<mzize; j++) |]
43 forik=0; k<msize; kH) | n
: c[1][3] = c[1]1[3] + a[illk] * b[k][]]: 46
Selected 1 rowwis): 1,997,939,846 504,00 -
4 T (| | 3

Array accesses are poorly addressed

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved.

Software
Products *Other brands and names are the property of their respective owners.

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

From Tuning Guide:

® How: Memory Bound sub-category, Metrics: L3 Latency, LLC Miss

® What Now:
® If either metric is highlighted for your hotspot, consider
reducing misses:
® Change your algorithm to reduce data storage
® Block data accesses to fit into cache
® Check for sharing issues (See Contested Accesses)
® Align data for vectorization (and tell your compiler)

® Use the cacheline replacement analysis outlined in section
B.3.4.2 of Intel® 64 and IA-32 Architectures Optimization
Reference Manual, section B.3.4.2

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Top-Down with a Memory Bound issue :intel’

B General Exploration General Exploration wiewpoint (change) @

@ Analysis Target| | Analysis Type | | B8 Collection Log | | B Surnmary ¥ Top-down Tree | | BT

Grouping: [Funl:til:un I Call stack,

Hardwware Ev... Harduware Ev.., Filled Pipeline Slots Urfilled Pipeline Slots (stalls)
i
: CPI
Function / Call Stack || CPUCL., _ INST_RETIRE..| Rate - Bad Back-end Front-end
THREAD AN FHrng Speculation Bound Bound

El rrultiplyd

43,980,065,970| 51,604,077, 405
[EesetTirner 24,000,036 0 0.000 0.000 0.000 1.000 0.000

[init_arr 20,000,030 16,000,024 1.250 0.000 0.000 1.000 0.000
[+ KeSynchronizeExecution 18,000,027 0 nono 0.3819 n.oon 1.000 1.00n0

[+ FxRBeleaseRundmmnProte 14nnnn21 Aannnng *334 f1.nnn f.nnn 1.000 n.nnn
Zelected 1 rowe(s):| 43,980,065,970 51,604,077, 406 0,852 0,353 n.o01 0.573 0.073

With a Loop-Interchange (was 97% Back-End bound)

Ei@ Software & Services Group, Developer Products Division

i ion. i . Optimization
Software Copyright © 2014, Intel Corporation. All rights reserved Ng‘tjce m
Products *Other brands and names are the property of their respective owners. R

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Top-Down for NUMA analysis :intel’

Unfilled Pipeline Slots (Stalls)

Back-end Bound

Mermary Bound Core Bound
L1 Bound Store Bound L3 Bound DRAMN Bound Dl Port

DTLE Ow.. LoadsBl.. Splitloads 4KA.. Fals.. Split.. DTL.. Contest.. Data Shar.. L3Llat.. Local DRAM Remote DRA. Rem,. 2~ctive Utilization

0.000 0.000 0.000) 0000 0.000 0.000) 0.000 0.000 0.000) 0.001 0,000 0.000] 0,000/ 0.000

0,000 0.000 0.000 0000 0000 0.000 0.000 0.000 0.000 0000 0,000 0.000 0,000 0.000 0.000
0.000 0.000 0.000 0.000 0000 0.000 0.000 0.000 0.000 Q.00 0.000 0.000 0,000 0.000 1.000
0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0411 0.000 0.000 0.000 0.000 0.283
0.000 0.000 0.000 0000 0000 0.000 0.000 0.000 0.000 0444 0.000 0.000 0,000 0.000 0.000
0.000 0.000 0.000 0.000 0000 0.000 0.000 0.000 0.000 Q.00 0.000 0.000 0,000 0.000 0.574

e Multi-socket systems with NUMA require special analysis
 VTune, numastat, numactl
 Remote cache and DRAM accesses can cause stalls
 Now what?
 Memory allocation vs. access
 Temporal locality

[in/teb Software & Services Group, Developer Products Division

§0,1:tware Copyright © 2014, Intel Corporation. All rights reserved.
roducts

*Other brands and names are the property of their respective owners.

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Memory Bandwidth using PMUs -

* Know your max theoretical memory bandwidth
* Locate areas of high LLC misses
 PMU events available to calculate QPI bandwidth on newer processors

Welcome r001bw x
M Bandwidth - Bandwidth /~ © Intel VTune Ampliﬁer XE 201

@ Analysis Target Analysis Type B CollectionLog = Bl Summary a Bottom-up

o 0.5¢ is 15 (19363 2% 3% 3.5 + 455 sz 5.5 s < |I<iBandwidth, GB/se:
s, 201 Bk Ledosraiald
package_0 (] Read Bandwidth, (
& - ihids Read Bandw
§ .201
2 package_1
8
i
= -]
% package_0
8 178
£ package_1
g package_1
§ Read Bandwidth, Gajsec
4.09% j
‘J Fiw

Grouping: |Fu’xtm,!l:al Skack

Function | Call Stack Instructions R... | CP1 ... | Load Mes... Modle Function (Fu
83,2225 | 43,062,000,000 JERFEY 206,690,000 | matrix, axe

sk _ar L1475 86,000,000 2.326 0 matrix.exe ik _ser

* KeSetTimer .02 4,000,000 11,500 0 ntoskanl.exe KeSetTimer

* KeSyncheonzeExection X 2,000,000 15,000 0 ntoskynd.exe KeSynchronzeExecution

PsGatCurrentThraadWin32 ThreadAndEnter Crti siRegion N 8,000,000 3.250 10,000 ntosknl.exe PsGetCurrent TheeadWin32Theead
* KelpdateRunTiens X 3 8,000,000 3.750 0 ntoskinl.exe KelpdateRunTme

* KeRemoveQueueEx \ 2,000,000 5,000 0 ntoskenl.exe KeRemoveQuewsEx
#ExfacqurePushlodExchusive . 8,000,000 3.250 40,000 ntoskynl.exe ExfAcquirePushlockExdusive

* SeAccessChackWithHint 0.0065 8,000,000 1.250 10,000 rroskynl.exe SedccassChedkWithiHink

Selacted | rowds): | 83.222¢| 43.082.000.000° 5.623 1 206.890.000 -

[in/teb Software & Services Group, Developer Products Division

i ion. i . Optimization
Software Copyright © 2014, Intel Corporation. All rights reserved

Products

*Other brands and names are the property of their respective owners.

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Tuning Guides Have Lots of Metrics and Hints intel’

For example:

Back-End Bound

Data Sharing

® Why: Sharing clean data (read sharing) among cores (at L2
level) has a penalty at least the first time due to coherency

® How: Memory Bound sub-category, Metrics: Data Sharing
® What Now:

® Tf this metric is highlighted for your hotspot, locate the source
code line(s) that is generating HITs by viewing the source. Look for
the MEM_LOAD_UOPS_LLC HIT _RETIRED.XSNP_HIT_PS event which
will tag to the next instruction after the one that generated the HIT.

® Then use knowledge of the code to determine if real or false
sharing is taking place. Make appropriate fixes:

® For real sharing, reduce sharing requirements
® For false sharing, pad variables to cacheline boundaries

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved. Optimization
*Other brands and names are the property of their respective owners. Al S

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Tuning Guides Have Lots of Metrics and Hints intel"

For example:

Front-End
Front-end Latency Bound

® Why: Front-end latency can lead to the Back-End not having
micro-ops to execute (instruction starvation).

® How: Front-End Latency sub-category, Metrics: ITLB Overhead,
ICache Misses, Length-Changing Prefixes

¢ What Now:

e If any of these metrics are highlighted for your hotspot, try using
better code layout and generation techniques:

— Try using profile-guided optimizations (PGO) with your compiler

— Use linker ordering techniques (/ORDER on Microsoft’s linker or
a linker script on gcc)

— Use switches that reduce code size, such as /O1 or /Os

— For dynamically generated code, try co-locating hot code,
reducing code size, and avoiding indirect calls

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved. Optimization

*Other brands and names are the property of their respective owners.

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Intel Xeon Phi intel.

* Has its own tuning guide and metrics

Software

Products

/home/michome/rreed/projects/matrix/linux/matrix-mic - Intel VTune Amplifier

Eile View Help
‘@ s Hel b S o
Welcome r001llh roO2ge = -

™ General Exploration General Exploration viewpoint (change

Analysi B Collection Log| K Summary | B RNtelaRie +% Top-down Tree B T nd Frames

Grouping: ‘ Function / Call Stack

. * Clockticks by ... |nstructions cPl Cache Usage Vec.. TLB Hardware Ev... Hardwar... Hardware Ev... Ha
CPUTime~ CPU_CLK_UNH... Retired Rate] Misses L1.. Estimate.. Usa.. USa.. |2 DATA RE.. L2 DAT.. L2 DATA RE.. L2 |
P multiply3$omps$parallel_for@125 556.3765_ 606,450,000,000 57,350,000,000 10.575 144,250,000 0.993 54384.500 0.000 0.000 1,412,000,000 3,000,000 4,789,500,000 188,
b __kmp_wait_sleep 57.615s () 62,800,000,000 12,300,000,000 5.106 0 1.000 0.000 0.000 0.000 0 0 0
b__kmp_static_yield 32.3855' 35,300,000,000 4,250,000,000 8.306 0 1.000 0.000 0.000 0.000 0 0 0
b tasklet_hi_action 5.688s 6,200,000,000 100,000,000 62.000 0 1.000 0.000 0.000 0.000 1,000,000 0 6,000,000 500
b__kmp_yield 5.046s |Sort By Estimated Latency Impact
P sched_info_queued 2.569s
b dynamic_irq_cleanup 1.881s Thi§ metric is an estimate uf t[]e average ngmber of c)!'cl'es tpken to service L1 misges. It i§ i[nperfect and likely to be Dvgr—gstimating the true impact of L1 misses. Huwrever it can'bz'e us}ed as a general
b_ kmp_x86_pause o indicator of whether the majoljty L1 Qata misses are hlttlng in L2. If the value for this metric is less thanyH:": cycles, theq itis likely the c'ase't!wat more thgn half of L1 misses are hitting in a hardware thread's
— =T local L2 cache. To decrease this metric, apply optimizations to reduce data latency such as data reorganization, prefetching, cache blockingftiling, streaming stores, or data alignment.
P_kmp_x86_pause 06425 |Formula: { CPU_CLK_UNHALTED - EXEC_STAGE_CYCLES - DATA_READ_OR_WRITE) / DATA_READ_MISS_OR_WRITE_MISS
b kmp_wait_to_unref task_teams 0.413s 430,000,000 DU,U0U,U0U | 9.U00T 3,000,000 U.0uU BIUUU | U.0U0 U.UUU L,500, 000" 154 T
b vsnprintf 0.367s 400,000,000 0 0.000 0 1.000 0.000 0.000 0.000 0 0 0 4,50
b rt_mutex_slowlock 0.367s 400,000,000 0 0.000 0 0.000 0.000 0.000 0.000 0 0 0
b veso_addr 0.321s 350,000,000 50,000,000 7.000 0 1.000 0.000 0.000 0.000 0 0 0
Selected 1 row(s): 556.376s 606,450,000,000 57,350,000,000 10.575 144,250,000 0.993 54384.500 0.000 0.000 1,412,000,000 3,000,000 4,789,500,000 188,
i D& Il [D]
QF [0.5s 55 25 s 35 55 a5 Thread
matrix.mic (0 @3 Running
matrix.mic (0 | ik Hardware...
:::::im:i (g CPU_CLK_UNHALTED Hardware Ev...
S [matrix.mic (0 DATA_READ_MISS_OR_WRITE_MISS duk Hardware...
-E matrix.mic (0 DATA_READ_OR_WRITE
matrix.mic (0 EXEC_STAGE_CYCLES
matrix.mic (0 INSTRUCTIONS_EXECUTED
matrix.mic (0 L1 DATA_HIT INFLIGHT PF1
matrix.mic (0 12 DATA READ M = T
Hardware E... L2_DATA_READ_MISS_MEM_FILL
L2_DATA_WRITE_MISS_CACHE_FILL

L2_DATA_WRITE_MISS_MEM_FILL el Any Thread

208 12 DATA_READ_MISS_CACHE_FILL

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respec

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Intel Xeon Phi otal)
(inte
» Efficiency Metric: Compute to Data Access Ratio

* Measures an application’s computational density, and suitability
for Intel” Xeon Phi™ coprocessors

Vectorization Intensity = VPU_ELEMENTS_ACTIVE /
VPU_INSTRUCTIONS_EXECUTED

L1 Compute to Data VPU_ELEMENTS_ACTIVE / < Vectorization Intensity

Access Ratio DATA_READ_OR_WRITE

L2 Compute to Data VPU_ELEMENTS_ACTIVE / < 100x L1 Compute to

Access Ratio DATA_READ_MISS_OR_ Data Access Ratio
WRITE_MISS

* Increase computational density through vectorization

and reducing data access (see cache issues, also, DATA
ALIGNMENT!)

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved. Optimization
Notice L=

*Other brands and names are the property of their respective owners.

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Intel Xeon Phi : *
(inte
« Has its own tuning guide and metrics

* Problem Area: VPU Usage

* Indicates whether an application is vectorized successfully and

efficiently
Vectorization VPU_ELEMENTS_ACTIVE / <8 (DP), <16(SP)
Intensity VPU_INSTRUCTIONS_EXECUTED

* Tuning Suggestions:

— Use the Compiler vectorization report!

— For data dependencies preventing vectorization, try using Intel” Cilk™
Plus #pragma SIMD (if safe!)

— Align data and tell the Compiler!
— Restructure code if possible: Array notations, AOS->SOA

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved. Optirnizaton
*Other brands and names are the property of their respective owners. Notice

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Performance Optimization Methodology (inter

* Follow performance optimization process
* Use the Top-down approach to performance optimization
« Use iterative optimization process
» Utilize appropriate tools (Intel's or non-Intel)
* Apply scientific approach when analyzing collected results

* Practice!
« Performance tuning experience helps achieving better results
* Right tools help as well

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved. Optimization
*Other brands and names are the property of their respective owners. M

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Performance Profiling Tools
Technology wise selection

You have a chose of many:

 From simplest and fastest...

Instrumentation OS embedded:
Sampling Task Manager, top, vmstat

* To very complicated and/or slow

Application/platform Project embedded:

Simulators Proprietary perf. infrastructure

Always consider overhead vs. level of detail — it's often a tradeoff J

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved. Optimizl‘_aijlon
*Other brands and names are the property of their respective owners. Motice ===

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

Scientific Approach to Analysis

None of the tools provide exact results
« Data collection overhead or dropping details
» Define what results need to be precise

Low overhead tools provide statistical results

« Statistical theory is applicable

* Think of proper sampling frequency (for data bandwidth)

« Think of proper length of data collection (for process)

* Think of proper number of experiments and results deviation

Take into account other processes in a system
* Anti-virus

« Daemons and services

« System processes

Start early — tune often!

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved. Optimizl‘_aijlon
*Other brands and names are the property of their respective owners. Motice ===

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

References :intel’

 Top-Down Performance Tuning Methodology

« www.software.intel.com/en-us/articles/de-mystifying-software-performance-
optimization

 Top-Down Characterization of Microarchitectural Bottlenecks

« www.software.intel.com/en-us/articles/how-to-tune-applications-using-a-top-
down-characterization-of-microarchitectural-issues

* Intel® VTune™ Amplifier XE

 www.intel.ly/vtune-amplifier-xe

* Tuning Guides

« www.intel.com/vtune-tuning-guides

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved. Optimization
NOTICE ==

*Other brands and names are the property of their respective owners.

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/
http://www.software.intel.com/en-us/articles/de-mystifying-software-performance-optimization
http://software.intel.com/en-us/articles/how-to-tune-applications-using-a-top-down-characterization-of-microarchitectural-issues
http://www.intel.ly/vtune-amplifier-xe
http://www.intel.com/vtune-tuning-guides

Legal Disclaimer & Optimization Notice (intel,

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on
Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using
specific computer systems, components, software, operations and functions. Any change to any of
those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products.

Copyright © , Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and Cilk
are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Software & Services Group, Developer Products Division

Copyright © 2014, Intel Corporation. All rights reserved. Optimization
Notice £

*Other brands and names are the property of their re9yteti®e28ldneig! Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/optimization-notice/

